MS – 768

II Semester B.C.A. Examination, June 2009 (Y2K8 Scheme) (2008-09 & Onwards) COMPUTER SCIENCE BCA 203 : Mathematics

Time : 3 Hours

Max. Marks: 90

 $(10 \times 2 = 20)$

Instruction : Answer all Sections.

SECTION – A

- I. Answer any ten of the following :
 - a) Define symmetric matrix with an example.

b) If
$$A = \begin{bmatrix} 2 & -1 \\ 4 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$. Find AB.

- c) Define order of a Group.
- d) Construct the composition table of multiplication mod 10 for the set $\{1, 3, 7, 9\}$.
- e) Find the projection of $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.
- f) Find $\vec{a}.(\vec{b}\times\vec{c})$ where, $\vec{a}=2\hat{i}+\hat{j}+3\hat{k}, \vec{b}=-\hat{i}+2\hat{j}+\hat{k}, \vec{c}=3\hat{i}+\hat{j}+2\hat{k}$.
- g) Find $\frac{d^n}{dx^n} [\sin 3x \sin 2x]$. h) If $y = (\sin^{-1} x)^2$ show that $(1 - x^2)y_2 - xy_1 - 2 = 0$.
- i) Evaluate : $\int \tan^{-1} x \, dx$.
- j) Evaluate : $\int_{0}^{1} 3x^2 + 2x + 1 dx$.
- k) Find the integrating factor of the equation $(1 + x^2)\frac{dy}{dx} + y = \tan^{-1} x$.
- 1) Test the equation for exactness : $(2xy + 3y)dx + (x^2 + 3x)dy = 0$.
- m) Find the direction cosines of a line which makes angles 90°, 60° and 30° with the co-ordinate axis.
- n) Find the centroid of the triangle with the vertices (4, 7, -6), (0, -5, 7) and (7, -8, 9).
- o) Find a vector normal to the plane x + 2y + 3z 6 = 0.

P.T.O.

MS – 768

SECTION – B

- II. Answer any four of the following :
 - 1) Solve using Cramer's rule :

2x + 5y + z = -1, x + 7y - 6z = -18, 3y + 6z = 9.

2) Solve using matrix method :

$$2x - 3y = 1$$
, $3x - y = 3$.

3) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

- 4) Find n^{th} derivative of sin(ax + b).
- 5) Find $\frac{d^{n}}{dx^{n}} \left[\frac{1}{(x+2)(x-1)} \right].$
- 6) If $y = e^{msin^{-1}x}$, Prove that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} (n^2 + m^2)y_n = 0$.

SECTION – C

- III. Answer any four of the following :
 - 7) Show that the cube roots of unity form an abelian group with respect to multiplication.
 - 8) Show that set of square roots of unity is a subgroup of the group of fourth roots of unity under multiplication.
 - 9) Show that $G = \{1, 2, 3, 4\}$ is an abelian group under multiplication modulo 5.
 - 10) Find the sine of the angle between the vectors $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 2\hat{j} + 2\hat{k}$.
 - 11) Show that the points A(2, 3, -1), B(1, -2, 3), C(3, 4, -2) and D(1, -6, 6) are coplanar.
 - 12) Find the unit vector coplanar with \vec{b} and \vec{c} but perpendicular to \vec{a} , where $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} \hat{k}$.

 $(4 \times 5 = 2)$

 $(4 \times 5 = 2)$

SECTION – D

- IV. Answer any four of the following :
 - 13) Evaluate : $\int \frac{\mathrm{d}x}{2x^2 + x 1}$.
 - 14) Evaluate : $\int x \cos^2 x dx$.
 - 15) Prove that $\int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx = \frac{\pi}{4}$.
 - 16) Solve : $y(1 + \log x)dx x\log xdy = 0$.
 - 17) Solve : $\frac{dy}{dx} xy = x^3y^2$.
 - 18) Verify the equation $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy = 0$, for exactness and hence solve.

SECTION – E

- V. Answer **any two** of the following :
 - 19) Find the angle between the diagonals of a cube.
 - 20) Find the image of the point (1, 2, 3) in the plane x + y + z = 9.
 - 21) Find $\vec{a} \times (\vec{b} \times \vec{c})$ and $(\vec{a} \times \vec{b}) \times \vec{c}$, if $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{c} = 2\hat{i} + \hat{j} + 4\hat{k}$.

22) Find the point of intersection of the lines $\frac{x-1}{-3} = \frac{y-2}{2} = \frac{z-3}{2}$ and $\frac{x-1}{3} = \frac{y-5}{1} = \frac{z}{-5}$.

 $(4 \times 5 = 20)$

 $(2 \times 5 = 10)$